By Topic

Information driven association rule hiding algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fovino, I.N. ; Joint Res. Center, Inst. for the Protection & Security of the Citizen, Ispra ; Trombetta, A.

Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when datamining techniques are used. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of sanitizing the database in such a way to prevent the discovery of sensible information (e.g. association rules). A drawback of such algorithms is that the introduced sanitization may disrupt the quality of data itself. In this paper we introduce a new methodology and algorithms for performing useful PPDM operations, while preserving the data quality of the underlying database.

Published in:

Information Technology, 2008. IT 2008. 1st International Conference on

Date of Conference:

18-21 May 2008