Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Fabrication of impedimetric sensors for label-free Point-of-Care immunoassay cardiac marker systems, with passive microfluidic delivery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Tweedie, M. ; Nanotechnol. Res. Centre, Ulster Univ., Jordanstown ; Subramanian, R. ; Lemoine, P. ; Craig, I.
more authors

Miniaturised point-of-care cardiac marker sensors are being developed, based on impedimetric sensing of cardiac enzyme capture by an antibody layer immobilised on a planar gold electrode sensor. Gold/Ti-on-glass substrates have been used, in a 2 electrode configuration, with antibodies immobilised on the working electrode. Microfluidic structures have been fabricated by a CO2 laser, in 25 mum thick pressure sensitive adhesive (PSA), on a PMMA lid, and the structure bonded on top of the planar sensor. Microfluidic blood/serum delivery has been investigated using a visualisation dye. Some flow problems are observed if the sensor is exposed to air for several days, suggesting that flow channel nanopillars and hermetic encapsulation may be required to guarantee flow properties in commercially produced modules. Work is ongoing to characterise the impedimetric signal changes for myoglobin capture by antimyoglobin, using these sensors. Fifty micron thick PSA, incorporating a robust spacer layer, will be used to give better definition of channel walls

Published in:

Engineering in Medicine and Biology Society, 2006. EMBS '06. 28th Annual International Conference of the IEEE

Date of Conference:

Aug. 30 2006-Sept. 3 2006